ELECTROCHEMICAL SYNTHESIS OF TETRAHYDRO-1,2-SUBSTITUTED 3-PYRIDAZINONES AND 3,6-PYRIDAZINEDIONES

Chantal DEGRAND^{*} and Dominique JACQUIN

Laboratoire de Polarographie Organique, Faculté des Sciences Gabriel, 21100 Dijon, France.

The reductive cyclisation of aromatic azo compounds leading to hexahydropyridazine derivatives is known¹⁻³. A synthesis of hexahydro-1,2-diphenyl-pyridazine by chemical^{1,2} or electrochemical³ reduction of azobenzene <u>l</u>a in the presence of 1,4-dibromobutane has been performed.

The synthesis of tetrahydro-1,2-substituted 3-pyridazinones $\frac{4}{2}$ and 3,6-pyridazinediones $\frac{5}{2}$ by chemical or electrochemical reduction of aromatic azo compounds $\frac{1}{2}$ in the presence of 4-bromobutyryl chloride $\frac{2}{2}$ and succinyl chloride $\frac{3}{2}$ (scheme 1) has never been described.

$$\frac{\text{Scheme 1}}{1} + 2e(\text{or 2M}) + Br(CH_2)_3 C^{C1} \stackrel{2}{=} \\ + 2e(\text{or 2M}) + Cl_2(CH_2)_2 C^{C1} \stackrel{3}{=} \\ 0 + Br^- + Cl^- (+ 2M^+) \\ 0 + 2e(\text{or 2M}) + Cl_2(CH_2)_2 C^{C1} \stackrel{3}{=} \\ 0 + 2e(\text{or 2M}) \stackrel{3}{=}$$

M = Alkali metal

We describe here the one step electrochemical synthesis, according to the scheme 1, of 4 and 5 derivatives. They are obtained by electrochemical reduction, in D.M.F., on a mercury pool electrode, of azobenzene 1a, cinnoline 1b and benzo(c)cinnoline 1c in the presence of acid chlorides 2 and 3.

In D.M.F., the electrochemical reduction of azobenzene $\underline{1}a$ occurs in two one-electron steps (waves A and B)^{4,5}. First, azobenzene is reduced in a rapid one-electron transfer reaction, to a stable anion radical⁵. The behaviour in aprotic media of $\underline{1}b^6$ and $\underline{1}c^{7,8}$, is similar to that of azobenzene. The half-wave potentials in D.M.F. of waves A and B (\underline{E}_A and \underline{E}_B) are given in table 1. In the presence of acid chloride $\underline{2}$ or $\underline{3}$, two more waves C and D are observed at more positive potentials. C is a kinetic wave. Their heights increase with increasing concentrations of acid chloride $\underline{2}$ or $\underline{3}$. Their half-wave potentials \underline{E}_C and \underline{E}_D are given in Table 1 in the case of succinyl chloride $\underline{3}$. The \underline{E}_C and \underline{E}_D values are similar in the case of $\underline{2}$.

In the presence of acid chloride $\frac{2}{2}$ or $\frac{3}{2}$, the polarographic modifications are the same as the ones observed by LUND and SIMONET⁹ when acetyl chloride is added to cinnoline and pyridazine derivatives. The wave C has been attributed to the reduction of the kineti-

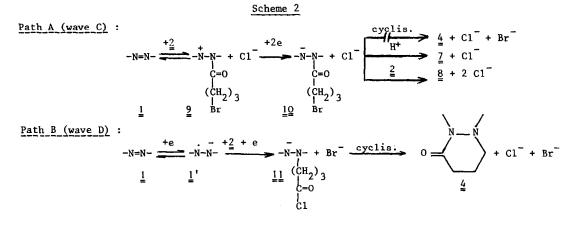

cally generated N-acylium species⁹. A N,N'-diacylated compound is usually obtained. D corresponds to the reversible formation of a radical anion, then its acylation and further reduction.

Table 1										
		E _A a,b	E _B a,b	Eca,b	E a,b D					
]a + 3]b + 3]c + 3	- 1.30 - 1.49 - 1.40	- 2.00 - 2.44 - 2.40	- 0.20 - 0.32 - 0.28	- 1.10 - 1.30 - 1.30					
a : V <u>vs</u> SCE ; b : Bu ₄ NPF ₆			0.1 M as	supporting	electrolyte					

In Table 2 are given the experimental conditions and the results of a series of preparative electrolyses. After dilution of the catholyte with water, neutralization, extraction with ether or benzene, and evaporation of the solvent <u>in vacuo</u>, the electrolysis products are purified by column chromatography on silica.

The yields of the N,N'-succinyl-dihydrazo derivatives $5a^{10}$, 5b and 5c which are obtained when azo compounds are reduced in the presence of 3, are very little modified by an increase of the acid chloride 3 concentration (see V and VI). When a large excess of 3 is present, the number of F.mol⁻¹ consumed is much larger than 2 (see I and VI) due to the reduction of 3 (E 1/2 = -1.4 V).

In the presence of $\frac{2}{2}$, mono and diacylated hydrazo compounds $\frac{7}{2}$ and $\frac{8}{2}$ are obtained when the electrolysis is run at a potential corresponding to the plateau of C (see II and VII). No cyclisation is observed. $\frac{7}{2}$ and $\frac{8}{2}$ may be prepared in almost quantitative yields in the presence of a large excess of $\frac{2}{2}$ during the electrolysis. If the applied potential corresponds to the plateau of D, tetrahydro pyridazinones $\frac{4}{4}$ and $\frac{4}{4}$ c are obtained (see III and VIII). At potentials of D, there is a competition between the reduction into $\frac{10}{2}$ of the kinetically generated species $\frac{9}{2}$ (path A of scheme 2) and the direct reduction to a radical anion $\frac{1}{2}$ of $\frac{1}{2}$ (path B). Since the final compounds of both paths are different ($\frac{7}{2}$ and $\frac{8}{2}$ in the case of A and cyclic compounds $\frac{4}{4}$ a and $\frac{4}{4}$ c in the case of B), we suggest that the radical anion $\frac{1}{2}$ may lead to the anion $\frac{11}{2}$ which is able to cyclise, on as opposed to $\frac{10}{2}$. An increase of the concentration of $\frac{1}{2}$ should favor the path B and the formation of $\frac{4}{2}$.

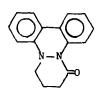
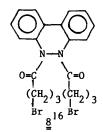
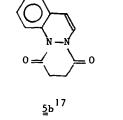


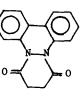
Table	2
	_

Azo Compound	Electrolysis n°	Azo mmol	2 mmo1	3_ mmo1	Applied Pot. (V) ^a	F consumed	Isolated Compounds	Yield (%)
	I	11		89	-1.2 ^b	3.6	≦a	49
<u>]</u> a	11	2.75	2.75		-0.6 ^c	1.3	1a 7 7	30 30
	III	2.75	2.75		-1.3 ^c	2.0	<u>l</u> a Hydrazobenzene 4a =	21 12 8
lٍb	IV	3.8		22	-1.3 ^b	2.8	<u>5</u> Ъ	26
	v	2.8		2.8	-1.2 ^c	2.3	5 <u></u> c	49
lc .	VI	11.1		89	-1.2 ^b	4.3	<u>5</u> c	54
	VII	2.8	5.6 ^d		-0.5 ^c	2.1	1 ≣8	30 40
	VIII	2.8	2.8		-1.5 ^c	2.2	1c 8 4c	20 10 16


a : vs SCE ; b : $Bu_4NI 0.1 M$; c : $Bu_4NPF_6 0.1 M$; d : added dropwise during the electrolysis.

4a¹³


 $\begin{array}{c} & & \\ & &$


<u>7</u>¹⁵

 $\bigcirc \bigvee_{N-N} & \bigcirc & \bigcirc \\ \circ & \swarrow & \circ & \circ \\ & & \underline{5}a^{10} \\ \hline$

¹⁸ <u>5</u> د

A high yield of $\frac{4}{2}$ (62 %) was thus obtained in the following experimental conditions : stable dark green radical anion^{11,12} of benzocinnoline $\frac{1}{2}$ was generated in the electrolysis cell in the absence of acid chloride $\frac{2}{2}$. A solution of $\frac{2}{2}$ in D.M.F. was added dropwise until depletion of the green color. Faradaic current was passed again until the dark green coloration appears again. Addition of $\frac{2}{2}$ was thus repeated again several times, as previously, until total depletion of the faradaic current (2.8 F mole⁻¹ consumed).

Except in the case of $5a^{10}$, the compounds mentioned in table 2 are new.

REFERENCES

- 1. J. W. B. Reesor and G. F. Wright, J. Org. Chem., 22, 375 (1957).
- 2. G. Wittig, W. Joos and P. Rathfelder, Liebigs Ann. Chem., 610, 180 (1957).
- 3. T. Troll and W. Elbe, Electrochim. Acta, 22, 615 (1977).
- 4. G. H. Aylward, J. L. Garnett and J. H. Sharp, Analyt. Chem., 39, 457 (1967).
- 5. J. L. Sadler and A. J. Bard, J. Am. Chem. Soc., 90, 1979 (1968).
- 6. B. J. Tabner and J. R. Yandel, J. Chem. Soc., A, 381 (1968).
- 7. S. Millefiori, J. Heterocycl. Chem., 7, 145 (1970).
- 8. H. Lund, M. A. Michel and J. Simonet, Acta Chem. Scand., B28, 900 (1974).
- 9. H. Lund and J. Simonet, C. R. Acad. Sc. Paris, 277, 1387 (1973).
- 10. H. Feuer, E. P. Rosenquist and F. Brown, Israel J. Chem., 6, 587 (1968).m = 245°C (EtOH).
- 11. D. H. Geske and G. R. Padmanabhan, J. Am. Chem. Soc., 87, 1651 (1965).
- 12. V. Kalyanaraman, S. S. Dua, C.N.R. Rao and M. V. George, Tetrahedron Lett., 235, 1968.
- 13. $4a m_p = 88°C$. IR(film) : 1680-1700 cm⁻¹ (C=0). NMR (CDC1₃) : 2-2.5 (m,4H), 3.7-3.95 (t,2H) 6.7-7.45 (m,8H), 7.7-7.9 (m,2H).
- 14. $\frac{4}{p}$ c m = 167°C (ether-petroleum ether). NMR (CDCl₃) : 2-2.4 (m,2H), 2.5-2.8 (m,2H), 3.7~3.95 (m,2H), 6.7-7.75 (m,8H). Mass (m/e) : 250 (M⁺, 37 %), 194 (100 %). 15. $\frac{7}{2}$ m = 134°C. IR(KBr) : 3300 cm⁻¹ (NH), 1650 cm⁻¹ (C=0). NMR (CDCl₃) : 2-2.4 (m,2H),
- 15. $\underline{7}$ m_p = 134°C. IR(KBr) : 3300 cm⁻¹ (NH), 1650 cm⁻¹ (C=0). NMR (CDC1₃) : 2-2.4 (m,2H), 2.75 (t, J = 7 Hz, 2H), 3.6 (t, J = 6 Hz, 2H), 6.6-7.6 (m, 11H). Mass (m/e) : 334 (M⁺, 1 %), 332 (M⁺, 1 %), 184 (100 %), 183 (100 %).

A partial substitution in the electrolysis mixture of a bromide by a chloride was observed in the case of $\frac{7}{2}$ and $\frac{8}{2}$, which leads to chloro or dichloro derivatives of $\frac{7}{2}$ and $\frac{8}{2}$.

- 16. $g_{m_1} = 120^{\circ}C$ (ether-petroleum ether). IR(KBr) : 1690-1710 cm⁻¹ (C=0). NMR (CDCl₃) :
- 1.9-2.25 (m, 4H), 2.6-2.9 (m, 4H), 3.5 (t, J = 6 Hz, 4H), 7.2-7.85 (m, 8H).
- 17. 5 IR(KBr) : 1650-90 cm⁻¹ (C=0). NMR (CDCl₃) : 2,72 (s, 4H), 5.9 (d, J = 8 Hz),
 7.1 (d, J = 8 Hz), 6.9-7.2 (m, 4H). Mass (m/e), chemical ionisation : 215 (M+1⁺, 100 %).
- 18. 5 m = 161° (ethanol). IR(KBr) : 1690-1710 cm⁻¹ (C=0). NMR (CDCl₃) : 2.8 (broad s, 4H), 7.15-7.45 (m, 4H), 7.6-7.9 (m, 4H). Mass (m/e), chemical ionisation : 265 (M+1^{+*}, 100 %).

(Received in UK 25 September 1978)